

Steve Hou 5/22/03

Modern Techniques in Sounder Data Compression

For GOES-R Program

State-of-the-Arts

- Biorthogonal Wavelet Transform (BWT) has been adopted in JPEG2000 for still image data compression – for both lossy and lossless data compression.
- Cosine Modulated Subband Filterbanks e.g. Modulated Lapped Transform (MLT), Modified Discrete Cosine Transform (MDCT), Local Cosine Transform – for lossy data compression only.
 - ➤ MDCT has been used in MPEG MP3 and AC-3 for high quality audio data compression.
 - Aerospace has patented MLT for high quality lossy image compression.
 - Aerospace has invented lossless MLT.

Agenda

- 3D lossy and lossless data compression for ABS simulated AIRS data and real HES data using the Biorthogonal Wavelet Transform (BWT).
- Comparison of BWT to Modulated Lapped Transform (MLT) method.
- Development of the Hybrid Orthogonal Transform (HOT).
- Future work

Single Layer Biorthogonal Wavelet Transform

Three Layer Biorthogonal Wavelet Transform (only the analysis filters are shown below)

3D Lossless Data Compression on Simulated AIRS Data

- Have done 3D lossless data compression, using BWT, for ABS simulated longwavelength AIRS data.
- ➤ For noisy data the compression ratio is 2.04
- ➤ For noise-free data the compression ratio is 3.36

3D Lossy Data Compression on Simulated AIRS Data

- Have finished 3D lossy data compression, using BWT, for ABS simulated long-wavelength, midwavelength, and short- wavelength AIRS data.
- The results are shown in the following slides.
- Due to the high contrast of the long-wavelength data, the compression ratios have been kept below 10 for reasonably small errors (1.1%).
- SSEC in University of Wisconsin has done the retrieval analysis on these results.

Image Quality Metrics

Global Quality Measure:

Root-Mean-Squared Error (RMSE)
Peak Signal-to-Noise Ratio (PSNR)
PSNR=20 Log₁₀(255 / RMSE) dB

Local Quality Measure:

Peak Absolute Error (PAE)

PAE=Max|orig(p_i) - rec(p_i)| for all i

3D Lossy Compression Using BWT

For Simulated AIRS Data (The maximum RMSE ~ 0.12%)

Compression Ratio

3D Lossy Compression Using BWT

For Simulated AIRS Data (The maximum PAE ~ 1.1%)

Compression Ratio

3D Lossy Data Compression on Real HES Data

Compression ratio for all LW, MW, and SW was set to 4.4

	RMSE	PSNR(dB)	PAE
LW	19.43	58.52	402
MW	6.26	68.35	148
SW	27.00	55.65	16290

Principles of MLT

Comparison of MLT to BWT

16:1 BWT 16:1 MLT

Comparison of MLT to BWT

For Test Image: Goldhill

Comparison of MLT to BWT

For Test Image: Goldhill

Bitrate

Recent Inventions

- The lossless Discrete Cosine Transform (DCT)
- The lossless Modulated Lapped Transform (MLT)
- The lossy and lossless Extended Haar Transform (EHT)
- The lossy and lossless Hybrid Orthogonal Transform (HOT)

Hybrid Orthogonal Transform (HOT)

Basis Functions of HOT

Comparison of HOT with DCT

original	DCT output	HOT output	
14	231.93	231.93	
75	-67.50	-67.88	low-frequency
76	-19.67	-12.94	components
87	-30.46	-12.45	
89	-13.44	-40.34	
97	-20.28	-3.14	high-frequency
99	-8.69	-2.86	components
119	-11.33	-9.50	

The low-frequency HOT components drop off faster than DCT The high-frequency HOT components have well-defined locality than DCT

Advantages of HOT

- Long sought after transform for both lossy and lossless data compression applications.
- The low-pass bases can achieve as much as energy compaction as the Discrete Cosine Transform (DCT).
- The high-pass bases have as much space localization as the Haar Wavelet Transform.
- The HOT pyramid outperforms the Biorthogonal Wavelet Transform (BWT) pyramid being adopted in JPEG 2000.

Multiple Resolution Pyramid Layers

New Transform Pyramid (HOT Pyramid)

JPEG2000 Transform Pyramid (BWT Pyramid)

BWT			
BWT	Low-pass	High-pass	
BWT	Low-pass		High-pass

Comparison of HOT Pyramid to BWT Pyramid

16:1 BWT 16:1 HOT

Comparison of HOT and BWT Pyramids to MLT (Sample image: Goldhill)

Bitrate (bpp)

Comparison of HOT and BWT Pyramids to MLT (Sample image: Goldhill)

Bitrate (bpp)

Comparison of HOT Pyramid to BWT Pyramid

13.34:1 BWT 13.34:1 HOT

Comparison of HOT and BWT Pyramids to MLT (Sample image: DMSP)

Comparison of HOT and BWT Pyramids to MLT (Sample image: DMSP)

Bitrate (bpp)

Comparison of HOT Pyramid to BWT Pyramid

16:1 BWT 16:1 HOT

Comparison of HOT and BWT Pyramids to MLT (Sample image: Boy)

Bitrate (bpp)

Comparison of HOT and BWT Pyramids to MLT (Sample image: Boy)

Comparison of HOT and BWT Pyramids to MLT in Image Data Compression Simulations

(All test images are 8 bpp and 512 by 512 size. All compression ratios are 10:1)

<u>metrics∖images</u>	<u>Lena</u>	<u>mount</u>	<u>newrv</u>	<u>newrr</u>	<u>chan4</u>
(1) Root-Mean-Squared Error (RMSE)					
HOT(+2BWT)	2.96	2.35	4.33	1.76	1.40
BWT (3LBWT)	3.46	2.52	4.66	1.98	1.48
MLT	2.94	2.23	4.10	1.74	1.34
(2) Peak Signal-to-Noise Ratio (PSNR) in dB					
HOT(+2BWT)	38.70	40.76	35.40	43.23	45.23
BWT (3LBWT)	37.35	40.09	34.75	42.18	44.71
MLT	38.77	41.15	35.87	43.34	45.61
(3) Peak Absolute Error (PAE)					
HOT(+2BWT)	18	13	25	12	8
BWT (3LBWT)	18	13	26	13	9
MLT	22	18	46	17	9

Letter Grades of Overall Quality

(Based on 2D lossy compression of 10 images)

	<u>BWT</u>	<u>MLT</u>	<u>HOT</u>
Global	B(blurring)	A	A
Local	A	B(large PAE)	Α

Future Work

- Using the lossy HOT pyramid to compress ABS simulated AIRS data and real HES data.
- Using the lossless HOT pyramid to compress ABS simulated AIRS data and real HES data.
- Compare the corresponding results obtained from both lossy and lossless HOT pyramids with those from the BWT pyramid.
- Continue to investigate better lossless data compression techniques for sounder data.